Notch 1 and 3 receptors modulate vascular smooth muscle cell growth , apoptosis and migration via a CBF - 1 / RBP - Jk dependent pathway

نویسندگان

  • Catherine Sweeney
  • David Morrow
  • Yvonne A. Birney
  • Seamus Coyle
  • Colm Hennessy
  • Agnieszka Scheller
  • Philip M. Cummins
  • Dermot Walls
  • Eileen M. Redmond
  • Paul A. Cahill
چکیده

Vascular smooth muscle cell (SMC) fate decisions (cell growth, migration, and apoptosis) are fundamental features in the pathogenesis of vascular disease. We investigated the role of Notch 1 and 3 receptor signaling in controlling adult SMC fate in vitro by establishing that hairy enhancer of split (hes-1 and -5) and related hrt’s (hrt-1, -2, and -3) are direct downstream target genes of Notch 1 and 3 receptors in SMC and identified an essential role for nuclear protein CBF-1/RBP-Jk in their regulation. Constitutive expression of active Notch 1 and 3 receptors (Notch IC) resulted in a significant up-regulation of CBF-1/RBP-Jk-dependent promoter activity and Notch target gene expression concomitant with significant increases in SMC growth while concurrently inhibiting SMC apoptosis and migration. Moreover, inhibition of endogenous Notch mediated CBF-1/RBP-Jk regulated gene expression with a non-DNA binding mutant of CBF-1, a Notch IC deleted of its delta RAM domain and the Epstein-Barr virus encoded RPMS1, in conjunction with pharmacological inhibitors of Notch IC receptor trafficking (brefeldin A and monensin), resulted in a significant decrease in cell growth while concomitantly increasing SMC apoptosis and migration. These findings suggest that endogenous Notch receptors and downstream target genes control vascular cell fate in vitro. Notch signaling, therefore, represents a novel therapeutic target for disease states in which changes in vascular cell fate occur in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro.

Vascular smooth muscle cell (VSMC) phenotypic modulation is a key factor in vascular pathology. We have investigated the role of Notch receptor signaling in controlling human vascular smooth muscle cell (hVSMC) differentiation in vitro and established a role for cyclic strain-induced changes in Notch signaling in promoting this phenotypic response. The expression of alpha-actin, calponin, myosi...

متن کامل

Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A.

OBJECTIVE Notch, VEGF, and components of the Hedgehog (Hh) signaling pathway have been implicated in vascular morphogenesis. The role of Notch in mediating hedgehog control of adult vascular smooth muscle cell (SMC) growth and survival remains unexplored. METHODS AND RESULTS In cultured SMCs, activation of Hh signaling with recombinant rShh (3.5 mug/mL) or plasmid encoded Shh increased Ptc1 e...

متن کامل

ATVB In Focus Smooth Muscle Cells

Notch signaling is an extremely conserved and widely used mechanism regulating cell fate in metazoans. Interaction of Notch receptors (Notch) with their ligands (Delta-like or Jagged) leads to cleavage of the Notch intracellular domain (NICD) that migrates into the nucleus. In the nucleus, NICD associates with a transcription factor, RBP-Jk. The NICD–RBP-Jk complex, in turn, upregulates express...

متن کامل

Notch signaling in vascular development.

Notch signaling is an extremely conserved and widely used mechanism regulating cell fate in metazoans. Interaction of Notch receptors (Notch) with their ligands (Delta-like or Jagged) leads to cleavage of the Notch intracellular domain (NICD) that migrates into the nucleus. In the nucleus, NICD associates with a transcription factor, RBP-Jk. The NICD-RBP-Jk complex, in turn, upregulates express...

متن کامل

Ethanol stimulates endothelial cell angiogenic activity via a Notch- and angiopoietin-1-dependent pathway.

AIMS Our aims were to determine the effect of alcohol (EtOH) on endothelial angiogenic activity and to delineate the cell signalling mechanisms involved. METHODS AND RESULTS Treatment of human umbilical vein endothelial cells (HUVECs) with EtOH (1-100 mM, 24 h) dose-dependently increased their network formation on Matrigel (an index of angiogenesis) with a maximum response (2.5- to 3-fold inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004